
A Deep Learning Approach to Program Similarity
Niccolò Marastoni
University of Verona

Italy
niccolo.marastoni@univr.it

Roberto Giacobazzi
University of Verona

Italy
roberto.giacobazzi@univr.it

Mila Dalla Preda
University of Verona

Italy
mila.dallapreda@univr.it

ABSTRACT
In this work we tackle the problem of binary code similarity by
using deep learning applied to binary code visualization techniques.
Our idea is to represent binaries as images and then to investigate
whether it is possible to recognize similar binaries by applying deep
learning algorithms for image classification. In particular, we apply
the proposed deep learning framework to a dataset of binary code
variants obtained through code obfuscation. These binary variants
exhibit similar behaviours while being syntactically different. Our
results show that the problem of binary code recognition is strictly
separated from simple image recognition problems. Moreover, the
analysis of the results of the experiments conducted in this work
lead us to the identification of interesting research challenges. For
example, in order to use image recognition approaches to recognize
similar binary code samples it is important to further investigate
how to build a suitable mapping from executables to images.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Security
and privacy→ Software reverse engineering; • Human-centered
computing → Empirical studies in visualization;

KEYWORDS
Code similarity, deep-learning, obfuscation, code visualization

ACM Reference Format:
Niccolò Marastoni, Roberto Giacobazzi, and Mila Dalla Preda. 2018. A Deep
Learning Approach to Program Similarity. In Proceedings of the 1st Interna-
tional Workshop on Machine Learning and Software Engineering in Symbiosis
(MASES ’18), September 3, 2018, Montpellier, France. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3243127.3243131

1 INTRODUCTION
Binary code similarity is of interest in many different fields within
computer science such as malware analysis [18, 21], authorship
analysis [1, 6], code patching [7, 11, 13] and copyright infringement
investigation [33]. Indeed, with open source projects being available
to everyone, the developers take the risk of having their algorithms
plagiarized or wrongfully used [33]. The offending parties typically
make significant changes to the original code by using automated

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MASES ’18, September 3, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5972-6/18/09. . . $15.00
https://doi.org/10.1145/3243127.3243131

code obfuscation tools, and then they compile and re-distribute
the modified code as binary executables. Thus, in order to detect
plagiarism we need to analyze the similarity stemming from the
binaries and not from the source code. When a vulnerability is
found in a program deployed all over a company it is important
to search for all the occurrences of such vulnerability across all
the software installed in the company. The installed software is
typically available in binary form and binaries are often obtained
through different compiler versions, with different optimization lev-
els, or targeting different architectures. This leads to syntactically
different binaries and makes the automatic identification of binary
vulnerabilities a challenging problem [11]. Binary code similarity
is important also when dealing with malware, as the executable file
is usually the only vector of attack. There has been a lot of work in
trying to classify malware families using the binaries on different
platforms such as Android (e.g., [26, 30]) and Win32 (e.g., [2, 29]).
In recent years, researchers have proposed many tools for binary
code similarity in different areas of computer science. These tools
typically rely on code features extracted either by static or dynamic
analysis and on distance metrics defined over these features. These
tools naturally inherit the limits of the two analysis approaches:
cost of feature extraction and over-approximation of the extracted
features for static analysis and cost of feature extraction and code
coverage for dynamic analysis. Indeed, an efficient solution to the
problem of behavioral binary code similarity analysis is still needed
[8, 12]. We postulate that it is necessary to find a measure of pro-
gram similarity that (1) considers the executable files, (2) recognizes
executables with similar behaviour even when their code looks syn-
tactically different (3) does not depend on a priori knowledge of the
techniques (obfuscations, compilers, optimizations) used to obtain
the diversified executables.

Instead of proposing a new set of code features and distance
metrics to measure the similarity between programs, our idea is
to investigate whether a sufficiently complex deep neural network
can learn this measure of similarity from a wide dataset of labeled
programs.

Deep learning has been successfully used in the past to solve
problems previously thought impossible to solve by a computer.
In 2016 Google unveiled AlphaGo [31], a system based on neural
networks that managed to beat some of the top players of Go. The
game Go presents some unique challenges, as its gigantic search
space has always been a problem for artificial intelligence, but the
neural networks managed to learn a strategy that achieved 57%
of wins (more than any previous effort) by evaluating more than
thirty million moves from human experts. The huge quantity of
moves already present in the dataset was not enough to beat the
top players, so the neural networks started to learn by continuously
playing matches against each other. Another well known example
of successful application of neural networks is in image recognition.

26

https://doi.org/10.1145/3243127.3243131
https://doi.org/10.1145/3243127.3243131

MASES ’18, September 3, 2018, Montpellier, France Niccolò Marastoni, Roberto Giacobazzi, and Mila Dalla Preda

For example, the ImageNet dataset received its best results by a
neural network in 2012 [20], with an experiment that boosted the
use of neural networks and general deep learning in the image
processing field. The resulting neural network was so complex that
the already large dataset of images had to be expanded by a factor of
2048 in order to allow the system to learn and to avoid overfitting.

The underlying power of deep neural networks is shown when
there are great quantities of training data, as with a complex enough
architecture they have the ability to approximate virtually any
kind of function [15]. Most approaches that use a deep learning
framework either generate their data [31] or use selected techniques
of data augmentation in order to amplify their datasets [20, 32].

In this paper we propose a way to procedurally create arbitrarily-
large datasets of behaviourally similar (equivalent) programs, in
order to have a dataset that is big enough to train a complex neural
network. Our system leverages the Tigress C obfuscator [9] to
iteratively apply many layers of syntactic transformations to our
original dataset of 47 programs. By definition these obfuscating
transformations maintain the semantics of programs while creating
hundreds of syntactic variants.

Since there already exists a substantial corpora of works on
image processing with deep neural networks, we first investigate
whether it is possible to train a neural network to recognize patterns
inside the image representation of binaries. To this end we propose
a representation that is aligned with other works in the subject
[17, 26] and is completely information-agnostic, meaning that we
do not use any prior knowledge to enhance the images with features
nor do we lose any information during the transformation. We also
do not make any assumption about the types of obfuscations used.

The main contributions of this work are:

• A framework based on neural networks capable of classifying
code into semantic-equivalence classes by taking as input
raw binary images

• Validation of the proposed framework against an automati-
cally generated dataset of binaries stemming from programs
obfuscated with the C obfuscator Tigress

• Analysis of the potentials and limitations of this approach
and identification of new research challenges

Structure of the paper: Section 2 explores the basics of some of
the concepts used throughout this paper, while in Section 3 we
start by showing the workflow of the proposed neural network
framework for binary similarity and then we provide a description
of the elements composing the workflow. Next, in Section 4 we
report the results of our experiments and in Section 5 we discuss
them. The paper ends with an overview of the next research tasks
that we intend to pursue, highlighting the open challenges and
research directions opened by our results.

2 BACKGROUND
In this section we briefly introduce some of the key concepts that
form the foundation of this paper.

Obfuscation. Let Prog denote the set of all programs. An obfus-
cation is a program transformation O : Prog → Prog that given a
program P ∈ Prog produces a new program O(P) with the same

functionality as P but that is “unintelligible” in some sense [3]. Ob-
fuscation techniques are mostly used to deter reverse engineering
efforts.

It is always possible to apply a syntactical transformation to
obfuscate the code while maintaining its semantic properties. But
for practical reasons, when obfuscating a program we do not want
to slow it down too much. Indeed, most obfuscating techniques add
computational overhead to the program’s execution, and it just gets
worse when multiple obfuscation techniques are used together. A
good obfuscation O(P) of a program P should not have more than
a polynomial slowdown [3].

This means that, while a program can maintain its original se-
mantics even after being modified ad infinitum by applying more
and more obfuscating transformations, it can also get progressively
slower, rendering the obfuscation process not entirely palatable.
Thus, all semantically equivalent variants of a program can be tech-
nically computed, but in a real world scenario not all of them will
be, as they would not be usable.

Binary Visualization. Binary files are the raw representation of
any type of file stored in the file system. As such they can be nu-
merically represented by any vector that holds these binary values,
starting from a simple vector of zeros and ones to other matrices
representations that groups these values in other meaningful ways.
These matrices can then be translated into images by encoding
every pixel with the value held in the respective cell of the matrix.
If the matrix is purely binary, the resulting image will only hold
two colors (usually black and white).

Classification. In machine learning a typical classification prob-
lem consists of a dataset of samples that can be divided in different
classes by considering certain metrics. For example, a set of images
can be grouped with regards to their main colors by using some
simple quantitative measure. Or they could be grouped according
to the subject portrayed in the image, and this is a much harder
problem to solve [20].

In our case the dataset is made up of different programs that
can be grouped with respect to their semantics, meaning that we
group together programs that compute the same function. This
means that our classifier ideally has to label the code samples with
regard to their input-output relationships, disregarding their syn-
tactic dissimilarities. Or, more realistically, it should find syntactic
patterns that survived the many iterations of obfuscation, since a
true semantic similarity would be undecidable (Rice’s Theorem).

Building such a classifier would require us to define a represen-
tation of the code and a similarity measure that ensures the correct
grouping of semantically similar programs.

Deep Learning. DL groups together multiple machine learning
techniques that are characterized by multiple layers of connected
non-linear units. Their use has revolutionized the computer vision
field [23], where in some cases they have achieved better accuracies
than human experts.

In our case we will work mostly with a Convolutional Neural
Network (CNN), that is characterized by multiple convolutional
layers each usually followed by a pooling layer that provides down-
sampling and a ReLU layer for our non-linear activation function.

27

A Deep Learning Approach to Program Similarity MASES ’18, September 3, 2018, Montpellier, France

The convolutional architecture is especially suited for the classi-
fication of unprocessed images, allowing the system to learn the
correct problem representation by itself [22]. We use the shortening
NN when we mean a general Neural Network, as opposed to our
CNN.

3 EXPERIMENTAL SETUP
In Fig. 1 we depict the workflow of the deep learning approach that
we propose for binary similarity analysis through the visualization
of binaries.

We start by considering an initial dataset of 47 simple programs
written in C. This initial dataset is then iteratively obfuscated with
the C obfuscator Tigress, creating hundreds of obfuscated C pro-
grams that we can group in 47 semantic equivalence classes with
regard to the program from which they are generated. These ob-
fuscated programs are compiled to obtain a dataset of obfuscated
binaries classified in 47 semantic equivalence classes. Every exe-
cutable file in the obfuscated dataset is transformed into an image
(see Fig. 2) and is then fed into a convolutional neural network
(CNN). The CNN is then trained to classify these samples into their
respective semantic equivalence classes.

In the following we describe the elements of our framework in
more detail.

3.1 Initial C Dataset
In order to gather a dataset of semantically distinct programs to
train our NN, we downloaded two sets of programs written in
C: one set consists of 32 simple C programs used to learn the C
programming language and the other set contains 15 C programs
downloaded from the Google Code Jam competition. We also con-
sider the popular MNIST dataset to ensure that our approach works
with standard image recognition problems. The MNIST dataset [24]
contains 60 000 samples of hand-written digits, already encoded in
simple 28 × 28 matrices with float values between 0 and 1 repre-
senting grey-scale pixels. This dataset has been extensively used
in the pattern recognition community ever since its inception, and
it can be used as a cheap benchmark since it does not require any
pre-processing and it has an established ground truth.

In the following we report the list of the 32 simple C programs
downloaded from www.programiz.com/c-programming/examples:

(1) armstrong_n.c
(2) calculator.c
(3) char_frequency.c
(4) count_digits.c
(5) count_vowels.c
(6) factorial.c
(7) factorial_rec.c
(8) factors.c
(9) fib_1.c
(10) fib_2.c
(11) gcd.c
(12) gcd_rec.c
(13) hello_world.c
(14) lcm.c
(15) leap_year.c
(16) n_is_palindrome.c

(17) n_is_prime.c
(18) n_is_sum_of_primes.c
(19) positive_or_negative.c
(20) power_n.c
(21) prime_n_intervals.c
(22) pyramid.c
(23) quotient_remainder.c
(24) remove_char.c
(25) reverse_integer.c
(26) store_struct.c
(27) strcat.c
(28) strcpy.c
(29) stringsort.c
(30) strlen.c
(31) sum.c
(32) times_table.c

These programs perform semantically distinct duties and they
are small, averaging only 23 lines of code. This leads to small bina-
ries after compilation, which is an important factor since it allows
us to feed the entire binary image to our NN without going over
our strict memory boundaries (6GB of dedicated RAM in our GPU)
and thus without losing information.

Google Code Jam is an international programming competition
where contestants are given a problem to solve in their language of
choice. To checkwhether our approachworks with bigger programs
and to add more complexity to the problem at hand, we downloaded
some solutions in C from this competition. Here is the list of the
15 samples downloaded from Google Code Jam contests between
2008 and 2011, all of which contain 78 lines of code on average :

(1) alien_language.c
(2) bot_trust.c
(3) candy_splitting.c
(4) fair_warning.c
(5) fly_swatter.c
(6) magicka.c
(7) minimum_scalar_product.c
(8) multibase_happiness.c

(9) rotate.c
(10) saving_the_universe.c
(11) snapper_chain.c
(12) theme_park.c
(13) train_time_table.c
(14) watersheds.c
(15) welcome_to_codejam.c

Thus, the resulting initial C dataset is composed by the above
listed 47 C programs that perform a wide range of operations. These
programs form the 47 labels of our classification problem.

3.2 Tigress
The Tigress C Obfuscator is a tool that operates at the C source code
level, leveraging the CIL [27] system for the transformations. The
tool offers several syntactic transformations that can be stacked
together in order to improve the efficiency of the obfuscation. In
our experiments we consider the following eight obfuscations of
Tigress:

• Flatten implements code flattening by completely remov-
ing the original control flow structure of the program and
replacing it with a switch statement [35]. The switch control
variable is then modified dynamically to decide the order
in which the basic blocks are executed, which produces a
"flattened" control flow.

• Split performs a split of a specified function in different
functions that when combined perform the same task as the
original.

• EncodeArithmetic Integer arithmetic is replaced with more
complex expressions. For example the expression z = x +
y + w can be replaced by z = (((xy) + ((x ∧ y) << 1)) ∨
w) + ((xy) + ((x ∧ y) << 1)) ∧w). There are many of these
transformation (all taken from the book Hacker’s Delight
[36]) and they are chosen randomly at each run.

• InitOpaque adds data structures with invariants used to add
opaque predicates.

• EncodeLiterals replaces literal strings with functions that
generate them at runtime.

• InitEntropy creates the variables needed to add randomness
during execution.

• InitImplicitFlow initializes the signal handlers for other
transformations that rely on implicit flow.

28

MASES ’18, September 3, 2018, Montpellier, France Niccolò Marastoni, Roberto Giacobazzi, and Mila Dalla Preda

...

47
 s

am
pl

es

Ti
gr

es
s

200+ obfuscations

B
in

ar
y

Im
ag

es
 T

ra
ns

fo
rm

Neural Network

Figure 1: Workflow of the proposed binary similarity analysis framework.

• RandomFuns adds random functions to the original code.

We denote with T the set of the eight obfuscations of Tigress de-
scribed above.

3.3 Obfuscated Binaries Dataset
Deep learning has shown its potential when dealing with unpro-
cessed data [23], and produced the best results when dealing with
huge multi-labeled datasets of images [20]. We leverage this poten-
tial by automatically generating very big datasets of binary images
and feeding them to our NNs. In particular, we use Tigress to gen-
erate the obfuscated binaries dataset from the initial C dataset. We
start by obfuscating the 47 C programs of the initial dataset with
obfuscations from the set T, thus creating 8 variants of each original
C program. Then the obfuscations are stacked with two layers to
create an additional 56 variants and so on.

In order to create more meaningful stacks of obfuscations we
do not allow two identical transformations to be stacked on top of
each other (a Flatten followed by another Flatten would not be
very interesting), so we use

(8
k
)
combinations without repetitions

with k that ranges between 0 and 8. Moreover, the order in which
obfuscations are applied is important, since different orders can
modify the binary in different ways (e.g. a Flatten followed by a
Split would look very different the other way around). For this rea-
son we consider every permutation resulting from the combination.
We denote with Perm(T,k) ranged over by π , the set of possible
permutations of obfuscations from T of length at most k with no
repetitions. Here are some examples of the allowed permutations:

π1 : InitOpaque, Flatten
π2 : Split, EncodeLiterals, EncodeArithmetic
π3 : Split, EncodeArithmetic, InitOpaque
π4 : EncodeLiterals, Split, EncodeArithmetic
...

We define the T-equivalence relation on programs as ≡T ⊆ Prog ×
Prog where given two programs P1, P2 ∈ Prog we have that P1 ≡T
P2 if and only if there exists two permutations π1,π2 ∈ Perm(T,k)
and a program P ∈ Progr such that P1 = π1(P) and P2 = π2(P). We
denote with [P]T the T-equivalence class of a program P ∈ Proд,
namely the set of all programs equivalent to P with respect to
the obfuscations allowed by Perm(T,k).When considering the set
of obfuscated C programs obtained by applying obfuscations in

Perm(T,k) to the C programs in the initial dataset we have a T-
equivalence class for each C program in the initial dataset. These
equivalence classes contain programs that exhibit the same behavior
while being syntactically dissimilar, providing us with a trusted
ground truth. After these classes have been created, they serve as
labels to train the NNs for our classification problem.

Since applying obfuscations takes a lot of time, we generate only
200 variants for every initial program, in this way we obtain 9 400
obfuscated C programs grouped into 47 T-equivalence classes. The
dataset of binaries obtained by compiling these C programs is called
FinalObfuscatedDataset, while the smaller dataset containing 6 400
obfuscated binaries coming from the initial 32 simple C programs
is called SimpleObfuscatedDataset.

The FinalObfuscatedDataset was created in roughly 45 minutes
on a Ubuntu system with an new generation i7 and 32GB of RAM.

3.4 Binary Visualization
Each executable in the obfuscated binaries dataset is imported as a
raw file within our Python tool and it is converted using the numpy

package in order to represent it as a list of hexadecimal numbers (164
max value). It is then possible to convert these lists of hexadecimal
numbers to an image by assigning a width of 64 (we discuss this
seemingly arbitrary number in the next section) and using the
hexadecimal numbers as a value for the pixel’s color. For example,
Fig. 2 was generated by the imshow() function in Matplotlib using
the jet cmap.

In the following we discuss the issues that arise when represent-
ing binaries as images if we want to feed them to a NN.

Set Width. Binary files are mostly contiguous sequences of bytes
and they do not have much of a structure. For this reason when
representing them as images they may vary in width and height.
However, in order to perform image recognition we need data to be
visually consistent: it needs a fixed width and a fixed height. In [17]
the authors decided to set the width of every image with a fixed
value of 128, while Nataraj et al. [26] chose to vary the width of
the image according to its size, but still selecting it within a set of
powers of 2. We experimented with many settings and found that
they greatly affect the results, we discuss this in section 4.2.

Data Normalization. Binary files have random sizes, whichmeans
that when a fixed width w is applied we also need to ensure that

29

A Deep Learning Approach to Program Similarity MASES ’18, September 3, 2018, Montpellier, France

(a) With padding

(b) Without padding

Figure 2: Normal armstrong_n and its version without zeros

the size of the file is divisible by the width. So the first operation
that is applied to the data is padding: we add zeros to the end of
every file until we reach a number that is divisible byw .

Having the same width is not enough for an image recognition
problem, every image in the dataset is usually required to have the
same size. There are many approaches to this task, usually using
some form of random crop selection or resizing and deforming the
images.

In our case we implemented three simple forms of normalization:

(1) lower The length of the smallest sample (min_length) is
used as length for every other sample whose length is cut
at min_length (see Fig. 3). This of course results in faster
training times (up to 10× faster) but at the same time causes
loss of information and affects the results, in some of the
cases by quite a margin.

(2) upper The length of the biggest sample (max_length) is used
as length for every other sample. To achieve this we add 0s
to the end of the binary (see Fig. 3). This is a transformation
that does not lose any information and thus grants the best
accuracy in every case, at the cost of worse performance.

(3) mean The mean normalization is used when upper cannot be
used while analyzing the final dataset, because of memory
constraints on both the system RAM (32 GB) and the GPU
RAM (6 GB). The length of the images is set to the smallest
value between (max_length +min_length)/2 and 596. This
value is the biggest allowed length, since any higher value
will effectively crash the CNN, exceeding the GPU’s 6GB
RAM limit.

In Section 4.2 we explore how the different normalizations affect
the considered classification problem.

0 padding

cut

Original size Smallest sample Biggest sample

Figure 3: Normalizations

3.5 The Neural Network
The implementation of our CNN is entirely coded in Python using
the popular library Tensorflow. The CNN takes as input thematrices
representing the pixels in the binary image, and it is built to allow
for maximum flexibility, since the size of the images in a dataset is
always fixed, but different normalizations will change the height of
the inputs.

The CNN has then been trained on a desktop computer running
Ubuntu 16.04with a last generation i7, an nVidia Geforce 1060with
6GB of dedicated memory and 32 GB of RAM. Using Tensorflow

allowed us to leverage the full power of the GPU in our system
during the training of the Neural Net, since it creates computational
graphs to model the entire net before deferring the calculations to
the video card.

The architecture of our CNN is standard, it has an input layer,
followed by two convolutional layers, each followed by a max-
pooling layer. At the end we added a fully-connected layer just
before the output. The input layer has a dynamic size, meaning that
it depends on how many samples are in the dataset (x axis) and how
big these samples are (y axis). Each experiment has different values
because of the nature of our problem, since we work with different
datasets and some obfuscations will add length to the resulting
binary.

The first convolutional layer applies a filter of size 5 × 5 with
a stride of 1, using a rectified linear unit as activation function.
The output of the convolution is then applied as input to a simple
maxpooling layer that will downsample the data by focusing on tiles
of pixels of size 2×2. After this layer we apply a second convolution
layer followed by the last maxpooling layer.

All the weights in the CNN are initialized with random values
taken from a normal distribution with standard deviation set at 0.1,
to avoid running into local minima at early stages. The biases have
a fixed value of 0.1 in order to let the ReLU functions fire in the
beginning.

Several parameters can be tuned at every algorithm run, such as:
(1) test_ratio This value is usually set to 0.1, which means that

10% of the dataset (selected randomly) is going to be reserved
for the test set, while the remaining 90% will train the NNs.
We experimented with this parameter and tuning it to higher
values doesn’t significantly change the accuracy in the test
set until a 0.4 threshold, where it gives slightly worse results.

(2) gradient_rate Tuning this parameter allows the gradient
descent optimizer to perform longer or shorter strides. Since

30

MASES ’18, September 3, 2018, Montpellier, France Niccolò Marastoni, Roberto Giacobazzi, and Mila Dalla Preda

the algorithm can get stuck in local minima we found that a
rate of 0.8 gave us the best results, while the beginning value
of 0.5 often limited the training process to low accuracies
and was highly reliant on the initial random seed.

(3) limit This is the number of iterations during the NN training,
useful to set an early stop in case of overfitting and to check
whether longer training times could improve the accuracy.
Our best results have been with values higher than 4 000, so
it is usually set to 10 000.

(4) random_seed In order to better randomize the split be-
tween the test and the train set we allow the random seed
to be changed at every run.

(5) norm This parameter represents the normalizations and can
be chosen between lower, upper and mean. We will expand
on the significance of these values in Section 4.2.

The training is guided by the cross entropy function, that takes into
account the predicted labels and the ground truth, while the gradi-
ent descent optimizer (built into Tensorflow) decides the direction
in which the coefficients have to be modified in order to reduce the
mean error.

Several metrics are coded within the learning tool, at the end
of every run we save a plot of the train and test accuracy and
the evolution of the confusion matrix. This allows us to better
understand where the problems lie in the learning process.

3.6 Evaluation
The datasets are randomly divided into training set and test set at
the beginning of the algorithm run with a set ratio of 90% training
and 10% test. In order to ensure a correct cross-validation we run
the algorithm multiple times with different random seeds (thus
changing the test set at each run) and the results are evaluated with
regard to the accuracy value averaged over multiple runs. The NN
is then trained exclusively with the samples from the training set,
while the test set samples are always used to check whether the
learning algorithm generalizes. It is important to never train the
NN with samples from the test set to ensure that the classification
generalizes and to detect overfitting. The accuracy is defined as the
number of correct predictions over the number of samples. The
accuracy is measured both in the train set and in the test set, but in
the train set it is merely used as a mean to check wether the NN is
actually able to learn from the dataset. Every accuracy value that is
reported in Section 4 is relative to the test set, since it is the only
measure that allows us to ensure the correct generalization of the
resulting classifier.

In the evaluation process we also use confusion matrices as a
graphical tool to check whether some classes are being confused
with other classes and intuitively understand which ones are easier
to recognize. We prefer this visualization instead of precision and
recall since these measures would need to be averaged over 47
classes, hiding useful information about each class. In Fig. 4 we
show the confusion matrix for the final dataset when using the mean
normalization and then one with the lower normalization. The x
axis represents the predicted classes and the y axis holds the actual
classes, then every cell of the matrix is assigned a darker color in
relation to the number of samples that it represents.

Figure 4: Confusion Matrix for the FinalObfuscatedDataset, a
successful classification with the ’mean’ normalization

4 RESULTS
In this section we report the results of our experiments, highlighting
how the various parameters affect the classification.

4.1 Width
Our choice of setting the width to 64 is made mainly because it is a
power of 2 and represents the maximum bit size that an instruction
can take in a 64 bit system such as the one we work on. This
ultimately proved to be a good choice, since this parameter greatly
affects the learning process.

In order to investigate whether the width of the images affect
the classification accuracy in a simple image recognition problem,
we held some experiments with the MNIST dataset in our system.
The differences in the prediction scores are not significant and the
CNN is able to recognize the digits even if they are scrambled in
a way that no human could recognize them anymore (see Table 1
and Fig. 5).

We perform the same tests also on our dataset of images extracted
from obfuscated binaries. The results reveal a negligible difference
in both train and test accuracy only if the width of the binary image
is changed from 64 to 32. While when considering other width
values (still powers of 2) the classification accuracy drops, and it
reaches 0.04 in the test set with a set width of 256, an accuracy that
is slightly better than random guessing (see Table 2). This is one of
the first observations that leads us to believe that our classification
problem is vastly more complex than simple digits recognition.

31

A Deep Learning Approach to Program Similarity MASES ’18, September 3, 2018, Montpellier, France

Figure 5: A digit from the MNIST dataset with varying
widths: 28x28, 56x14 and 112x7

Table 1: Width change in MNIST

MNIST 28x28 56x14 112x7 14x56 7x112
train 0.98 0.98 0.96 0.98 0.96
test 0.98 0.97 0.96 0.97 0.96

Table 2: Width change in SimpleObfuscatedDataset

OBF ?x32 ?x64 ?x128 ?x256
train 0.98 0.97 0.43 0.10
test 0.89 0.91 0.33 0.04

4.2 Shallow Neural Net
We built a simple NN without any convolutional layers in order
to test the smallest size needed to achieve good results in a simple
image processing task. We only have the input layer, with the biases
and the weights initialized exactly like the deeper net in our study.
The 1-layer NN was trained with the MNIST dataset and achieved
an accuracy of 0.92, verifying that it is well suited for a simple
image recognition task. We note that 0.92 is by no means a good
result when it comes to this particular problem, since the state of
the art classifiers can get up to 0.99 accuracy. Our focus is not to
improve the image recognition state of the art but merely to show
that the same techniques can be applied in our specific problem
setting.

We observe that binary files are full of zero-padding, which does
not add any relevant information about the program run but affects
the size of the extracted image. For this reason in our experiments
we also consider the case where these zeros are removed. So when
presenting our results we have a parameter called Zeros that we set
to T when we consider binaries with zero-padding and to F when
we consider binaries without zeros. Removing zeros does not add
nor detract information and this is confirmed by our experiments
on the SimpleObfuscatedDataset where the results with or without
zeros are the same, with statistically irrelevant variations (see Table
4).

After being trained with the SimpleObfuscatedDataset, the shal-
low NN predictions had an accuracy of 0.03, which is just slightly

Table 3: Accuracies on the SimpleObfuscatedDataset with the
Shallow Neural Net

Norm lower mean upper
Zeros T F T F T F
Accuracy 0.02 0.03 0.03 0.03 0.02 0.03

Table 4: Accuracies on the SimpleObfuscatedDataset with our
Convolutional Neural Network

Norm lower mean upper
Zeros T F T F T F
Accuracy 0.86 0.84 0.91 0.91 0.94 0.93

better than randomly guessing the program labels (see the left side
of Table 3).

Fig. 6 shows the test accuracy in an algorithm run with 10 000
iterations, where the system clearly improves the test accuracy over
time with the MNIST dataset but fails to move from the baseline
with the SimpleObfuscatedDataset. The 0.03 value was encountered
both in the train set and in the test set, meaning that the algorithm
not only fails to generalize, but is unable to train at all. A failure
to improve the train accuracy usually means that the NN is not
expressive enough for the problem at hand.

This led us to believe that our binary images recognition problem
might be of a higher level than simple digits recognition.

Figure 6: Plot of the test accuracy with the Shallow Neu-
ral Network on the MNIST dataset (blue) and with our
SimpleObfuscatedDataset (orange)

4.3 Deep Convolutional Neural Net
Our secondNNhas a design still suited for simple image recognition.
To test this we ran the algorithmwith the MNIST dataset and scored
0.98 on both the train set and the test set with 10 000 iterations.

The SimpleObfuscatedDataset is then used as input to the CNN
and it achieved a test accuracy of 0.94 (see Table 4) with a dataset
of 6 400 samples divided into 32 labels and the following settings:
(1) normalization: upper (2) zeros: True.

The FinalObfuscatedDataset after 20 000 iterations achieved a
test accuracy of 0.88 (see Table 5 and Fig. 7) with a dataset of

32

MASES ’18, September 3, 2018, Montpellier, France Niccolò Marastoni, Roberto Giacobazzi, and Mila Dalla Preda

Figure 7: Plot of the test accuracy with the Convolutional
Neural Network on the MNIST dataset (blue) and with our
FinalObfuscatedDataset (orange)

Table 5: Accuracies on the FinalObfuscatedDataset given as in-
put to our CNN

Norm lower mean upper
Zeros T F T F T F
Accuracy 0.04 0.03 0.74 0.88 N.A. N.A.

9400 samples divided into 47 labels and the following settings: (1)
normalization: mean (2) zeros: False.

In this case we used the ’mean’ normalization, as ’upper’ pro-
duced images that our system could not handle due to their large
size. The overall training of the CNN takes approximately one hour.

This means that our CNN correctly classifies 88% of the sam-
ples that are contained in the FinalObfuscatedDataset into their
respective equivalence classes.

5 DISCUSSION
In this section we want to discuss what we can learn from the
results that we have obtained in our experiments.

5.1 Semantic Similarity
As reported in Table 5, our approach correctly classifies 88% of the
samples in the FinalObfuscatedDataset in their respective equiva-
lence classes by considering only the images extracted from their
executables. This dataset was created by applying the obfuscations
in a uniformly distributed order (considering every permutation),
which ensures that there are no biases stemming from artificially
denser data regions.

Since our NN can recognize programs whose syntax has been
scrambled, it can recognize the semantic similarity of some pro-
grams that calculate the same functions.

5.2 A Different Problem Class
As shown in Fig. 6, the shallow NN failed to learn on our dataset
and succeeded on MNIST, but it might be argued that recognizing
digits in a dataset that has already been preprocessed is possibly
the easiest image recognition problem out there. This is one of the
reasons why our problem could be closer to harder problems like
facial recognition or object recognition.

Furthermore, classifying images of binaries is a problem where
humans would not fare well at all, making it distinct from most
image recognition tasks.

5.3 Visualization Techniques
Our transformation of the binary file into an image is a lossless
one, but due to limited resources we were forced to implement two
different types of manipulations: zero removal and height normal-
ization.

In every experiment with both datasets we varied the parame-
ters to see whether the removal of information would impact the
classification accuracy. The lower normalization always gives the
worst performance (as far as the accuracy goes, but the speed of the
training process greatly improves), while the upper normalization
gives the best results when available.

When removing the zeros from the code we encountered no
significant loss of precision in the classification while working
with the small programs in the SimpleObfuscatedDataset (see Ta-
ble 4), but there is a big difference between the classification of
the FinalObfuscatedDataset with zeros and without zeros as can
be seen in Table 5. Since the average length of the files in the
FinalObfuscatedDataset greatly exceeds our limit of 586, this value
is used as fixed height for the images. This means that removing the
zeros will in fact allow more actual information to fit into smaller
images (as seen in Fig. 2).

Considering both factors, it is clear that our approach works best
when the mapping between the binary and its image is as close to
lossless as possible.

5.4 Source to Binary Loss of Obfuscation
Compilers employ several optimizations when generating the ex-
ecutable from the source, which means that not all the syntactic
transformations on the source code will be still present in the binary.
Different compilers also employ different optimization techniques,
thus we restricted our study to gcc in order to control for this
variation.

5.5 Limitations
Our study focuses on small programs because the CNN needs to
look at the entire image extracted from the binary to better classify
every executable in its class. Applying multiple obfuscations easily
expands the code and the resulting compiled file, forcing us to cut
the images in the experiments with the final dataset.

This means that the size of the executable file is the biggest
limitation of this study. Some possible solutions include (1) Us-
ing external cloud platforms to increase the available memory (2)
applying preprocessing techniques to reduce the size of the images.

6 RELATEDWORK
In this section we briefly describe closely related work.

In [25], the authors propose the use of the longest common
sequence of semantically equivalent basic blocks as a similarity
measure, where this semantic equivalence is checked by a theorem
prover after the input-output relations of the blocks have been
mapped into a set of symbolic formulas. Symbolic execution is also
employed in [39] in order to find similarity between binaries. Both

33

A Deep Learning Approach to Program Similarity MASES ’18, September 3, 2018, Montpellier, France

of these approaches suffer from the usual drawbacks of symbolic
execution tools and constraint solvers, such as huge computational
overheads and difficulty in handling certain specific syntactic fea-
tures, such as indirect jumps.

The work presented in [11] introduces the idea of similarity by
composition relative to binary similarity. Their technique draws
inspiration from image similarity works [4], where the images are
deemed similar if some of their respective regions are similar. Like
our approach, their system does not need the source code in order
to extract information, even though they do not work on the raw
binary itself but on its decompiled code. The goal to detect similarity
in binaries from multiple architectures is shared by [16], where the
authors propose another semantic approach.

The visualization of executable files has been used to help ana-
lysts explore the binaries visually, to spot recurring patterns [17]
that can help recognize different types of packers or to identify
the main fragment types in different binaries [10]. Nataraj et al.
[26] developed a technique to detect malware samples belonging
in the same family by processing grey-scale images extracted from
executable Win32 files. Our study uses the entire image, while they
focus on a vector of 320 features extracted from the images, the дist
[28], which uses a wavelet decomposition of an image. Another
difference is the classification method, while we use Deep Convo-
lutional Neural Networks they use a k-nearest neighbors classifier
with a euclidean distance. The dataset and problem at hand is also
not related to ours, since they focus on malicious Win32 executa-
bles and their only obfuscated samples exhibit a simple section
encryption that does not foil the textural features.

None of the previous works assume an agnostic approach nor
do they use Neural Networks. In [37] deep learning is used to de-
tect clones by extracting information from the source code, but it
is focused on reusability and avoiding the repetition of existing
code fragments in a codebase. Another application of deep learning
techniques can be found in [19] where the authors propose a novel
approach for malware classification using system call sequences.
In [34] deep learning is shown to be suitable for software engi-
neering tasks, in particular code clone detection, using different
representations. These works do not use features extracted from
the binaries.

Other works apply similarity measures to code in order to group
different programs by author, where the most promising results
used a very large corpora of features extracted from abstract syntax
trees in order to de-anonymize up to 1600 authorswith 94% accuracy
[5]. Lately this approach has been succesfully ported to binaries in
[6].

7 CONCLUSIONS AND FUTUREWORK
In this paper we propose a novel approach for program similarity
detection that uses raw binary files, allows for syntactic differences
and does not depend on further a priori knowledge. We build a tool
that leverages the power of a deep convolutional neural network
in order to classify the images extracted from these binary files.
We tested this approach on a dataset consisting of 9 400 programs
obfuscated iteratively with the C obfuscator Tigress starting from
47 original ones. The classifier achieved an accuracy of 0.88 on

the test set, showing that the technique is promising for similarity
detection.

7.1 Future Work
The positive results of our approach opened some interesting possi-
ble lines of research. In this section we briefly list some of the most
compelling open challenges.

7.1.1 New Visualization Techniques. We have started investigating
what happens when we lose information, both by eliminating zeros
and cropping the image in order to focus on the first part of the
binary. Although new forms of data normalizations are definitely
needed, it would also be interesting to investigate what would
happen with different types of transformations. Is it possible to
transform a binary into an image while adding information that is
learnt with either static or dynamic analysis? Would this make the
learning process better?

7.1.2 Formalize Transformations from Binary to Image. We would
like to take a formal approach regarding the transformations from
an executable to an image, accounting for loss of information or
entropy.

7.1.3 Semantic Similarity. Since our NN can recognize programs
whose syntax has been modified, we can test whether it can rec-
ognize the semantic similarity of programs that calculate the same
functions, but written by different coders.

7.1.4 Learning Obfuscations. One of the reasons why we worked
with the Google Code Jam datasets was to have a large sample
set of C programs so that we could try to learn the shape of the
obfuscations as well. This would be useful for reverse engineering.
There are existing works [14] that take a packed binary as input
and try to establish which packer has been used by detecting some
of the obfuscation techniques used.

7.1.5 Learning Authorship. Different programmers writing the
same function will usually approach the problem in a different
way, thus the same program written by different people is techni-
cally a syntactic transformation that maintains the semantics of the
original function, not unlike obfuscations. Connected to the point
above, if we can learn the obfuscation patterns, can we learn the
authorship?

7.1.6 More Obfuscators. Our approach should be completely ag-
nostic to the language used, since we work directly with the com-
piled binary, but would it work on different types of binaries, like
Java? And would it work with different chains of obfuscations? Our
next steps will be directed towards testing the limits of what our
approach can recognize so far.

7.1.7 What is the CNN Actually Learning? Many techniques em-
ployed in image processing with Neural Networks allow the re-
searchers to look more closely into what the system is actually
learning by visualizing what the neurons are recognizing [20, 38].
In typical image recognition problems these results show what kind
of edges and other kinds of higher level features are learnt, in our
case it could show the patterns in the binary code that survive the
obfuscations, allowing the classifier to work.

34

MASES ’18, September 3, 2018, Montpellier, France Niccolò Marastoni, Roberto Giacobazzi, and Mila Dalla Preda

ACKNOWLEDGEMENTS
We would like to thank our reviewers for their valuable comments
and input to improve our paper.

REFERENCES
[1] Saed Alrabaee, Noman Saleem, Stere Preda, Lingyu Wang, and Mourad Debbabi.

2014. Oba2: An onion approach to binary code authorship attribution. Digital
Investigation 11 (2014), S94–S103.

[2] Michael Bailey, Jon Oberheide, Jon Andersen, Z Morley Mao, Farnam Jahanian,
and Jose Nazario. 2007. Automated classification and analysis of internet malware.
In International Workshop on Recent Advances in Intrusion Detection. Springer,
178–197.

[3] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. 2001. On the (im) possibility of obfuscating programs. In
Annual International Cryptology Conference. Springer, 1–18.

[4] Oren Boiman and Michal Irani. 2007. Similarity by composition. In Advances in
neural information processing systems. 177–184.

[5] Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan, Clare
Voss, Fabian Yamaguchi, and Rachel Greenstadt. 2015. De-anonymizing program-
mers via code stylometry. In 24th USENIX Security Symposium (USENIX Security),
Washington, DC.

[6] Aylin Caliskan-Islam, Fabian Yamaguchi, Edwin Dauber, Richard Harang, Konrad
Rieck, Rachel Greenstadt, and Arvind Narayanan. 2015. When coding style
survives compilation: De-anonymizing programmers from executable binaries.
arXiv preprint arXiv:1512.08546 (2015).

[7] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan
Cho, and Hee Beng Kuan Tan. 2016. Bingo: Cross-architecture cross-os binary
search. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 678–689.

[8] Jonathan D Cohen. 2018. Apparatus and method for identifying similarity via
dynamic decimation of token sequence N-grams. US Patent 9,910,985.

[9] Christian Collberg. 2015. The Tigress C diversifier/obfuscator. Retrieved August
14 (2015), 2015.

[10] Gregory Conti, Sergey Bratus, Anna Shubina, Andrew Lichtenberg, Roy Ragsdale,
Robert Perez-Alemany, Benjamin Sangster, and Matthew Supan. 2010. A visual
study of primitive binary fragment types. White Paper, Black Hat USA (2010).

[11] Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical Similarity of
Binaries. In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’16). ACM, New York, NY, USA,
266–280.

[12] Yaniv David, Nimrod Partush, and Eran Yahav. 2018. FirmUp: Precise Static Detec-
tion of Common Vulnerabilities in Firmware. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 392–404.

[13] Debin Gao, Michael K. Reiter, and Dawn Song. 2008. BinHunt: Automatically
Finding Semantic Differences in Binary Programs. In Information and Communi-
cations Security. Springer Berlin Heidelberg, 238–255.

[14] Nguyen Minh Hai. 2016. A STATISTICAL APPROACH FOR PACKER IDENTIFI-
CATION. Vietnam Journal of Science and Technology 54, 3A (2016), 129.

[15] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feed-
forward networks are universal approximators. Neural networks 2, 5 (1989),
359–366.

[16] Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2017. Binary code clone
detection across architectures and compiling configurations. In Program Compre-
hension (ICPC), 2017 IEEE/ACM 25th International Conference on. IEEE, 88–98.

[17] Ashutosh Jain, Hugo Gonzalez, and Natalia Stakhanova. 2015. Enriching reverse
engineering through visual exploration of Android binaries. In Proceedings of the
5th Program Protection and Reverse Engineering Workshop. ACM, 9.

[18] Jiyong Jang, David Brumley, and Shobha Venkataraman. 2011. BitShred: Feature
Hashing Malware for Scalable Triage and Semantic Analysis. In Proceedings of
the 18th ACM Conference on Computer and Communications Security (CCS ’11).
ACM, New York, NY, USA, 309–320.

[19] Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert. 2016.
Deep learning for classification of malware system call sequences. In Australasian

Joint Conference on Artificial Intelligence. Springer, 137–149.
[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[21] Arun Lakhotia, Mila Dalla Preda, and Roberto Giacobazzi. 2013. Fast location of
similar code fragments using semantic ’juice’. In Proceedings of the 2nd ACM SIG-
PLAN Program Protection and Reverse Engineering Workshop 2013, PPREW@POPL
2013, January 26, 2013, Rome, Italy. ACM, 5:1–5:6.

[22] Yann LeCun, Yoshua Bengio, et al. 1995. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks 3361,
10 (1995), 1995.

[23] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436.

[24] Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit
database. AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist 2
(2010).

[25] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2014.
Semantics-based obfuscation-resilient binary code similarity comparison with
applications to software plagiarism detection. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
389–400.

[26] Lakshmanan Nataraj, S Karthikeyan, Gregoire Jacob, and BS Manjunath. 2011.
Malware images: visualization and automatic classification. In Proceedings of the
8th international symposium on visualization for cyber security. ACM, 4.

[27] George C Necula, Scott McPeak, Shree P Rahul, and Westley Weimer. 2002. CIL:
Intermediate language and tools for analysis and transformation of C programs.
In International Conference on Compiler Construction. Springer, 213–228.

[28] Aude Oliva and Antonio Torralba. 2001. Modeling the shape of the scene: A
holistic representation of the spatial envelope. International journal of computer
vision 42, 3 (2001), 145–175.

[29] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel Laskov.
2008. Learning and classification of malware behavior. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
108–125.

[30] A-D Schmidt, Rainer Bye, H-G Schmidt, Jan Clausen, Osman Kiraz, Kamer A
Yuksel, Seyit Ahmet Camtepe, and Sahin Albayrak. 2009. Static analysis of
executables for collaborative malware detection on android. In Communications,
2009. ICC’09. IEEE International Conference on. IEEE, 1–5.

[31] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484–489.

[32] Patrice Y Simard, David Steinkraus, John C Platt, et al. 2003. Best practices for
convolutional neural networks applied to visual document analysis.. In ICDAR,
Vol. 3. 958–962.

[33] Zhenzhou Tian, Qinghua Zheng, Ming Fan, Eryue Zhuang, Haijun Wang, and
Ting Liu. 2014. DBPD: A Dynamic Birthmark-based Software Plagiarism Detec-
tion Tool.. In SEKE. 740–741.

[34] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2018. Deep Learning Similarities from Different
Representations of Source Code. In International Conference on Mining Software
Repositories.

[35] Chenxi Wang and John Knight. 2001. A security architecture for survivability
mechanisms. University of Virginia.

[36] Henry S Warren. 2013. Hacker’s delight. Pearson Education.
[37] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.

2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering.
ACM, 87–98.

[38] Matthew D Zeiler, Graham W Taylor, and Rob Fergus. 2011. Adaptive deconvo-
lutional networks for mid and high level feature learning. In Computer Vision
(ICCV), 2011 IEEE International Conference on. IEEE, 2018–2025.

[39] Fangfang Zhang, Dinghao Wu, Peng Liu, and Sencun Zhu. 2014. Program logic
based software plagiarism detection. In Software Reliability Engineering (ISSRE),
2014 IEEE 25th International Symposium on. IEEE, 66–77.

35

	Abstract
	1 Introduction
	2 Background
	3 Experimental Setup
	3.1 Initial C Dataset
	3.2 Tigress
	3.3 Obfuscated Binaries Dataset
	3.4 Binary Visualization
	3.5 The Neural Network
	3.6 Evaluation

	4 Results
	4.1 Width
	4.2 Shallow Neural Net
	4.3 Deep Convolutional Neural Net

	5 Discussion
	5.1 Semantic Similarity
	5.2 A Different Problem Class
	5.3 Visualization Techniques
	5.4 Source to Binary Loss of Obfuscation
	5.5 Limitations

	6 Related Work
	7 Conclusions and Future Work
	7.1 Future Work

	References

